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Introduction e

e This lecture continues the discussion on external
diffusion effects in heterogeneous catalytic
reactions.

« We will further analyze the impact of diffusion
limitations, mass transfer coefficients, and effective
transport parameters on overall reactor
performance.

* The goal is to develop a comprehensive
understanding of how external diffusion influences
reaction kinetics and reactor design stratesgies.
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Topics to be Covered

e - Review of External Diffusion in Catalysis

- Molar Flux and Diffusion Mechanisms

* - Transport Coefficients and Effective Diffusivity
» - Boundary Conditions for Mass Transfer

» - Correlation for Convective Transport

o - Reaction-Limited vs. Diffusion-Limited Regimes
» - Practical Applications in Reactor Design
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Objectives e

* By the end of this lecture, students should be able to:

* - Explain the principles of external diffusion and its
Impact on reaction kinetics.

* - Apply mass transfer equations to heterogeneous
catalytic reactions.

o - Utilize boundary conditions in solving mass transfer
problems.

» - Differentiate between reaction-limited and diffusion-
limited systems.

* - Implement transport correlations in practical
engineering calculations.
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External Diffusion Effects

* Up until now we have assumed adsorption, surface reaction, or desorptionaw@gsays
rate limiting, which means there are no diffusion limitations .
* In actuality, for many industrial reactions, the overall reaction rate is limited by the
rate of mass transfer of products and reactants between the bulk fluid and the
catalyst surface
* External diffusion

* Internal diffusion
» Goal: Overall rate law for heterogeneous catalyst with external diffusion

limitations. This new overall reaction rate would be inserted into the design
equation to get W, X,, C,, etc
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Mass Transfer

« Diffusion: spontaneous intermingling or mixing of atoms or molecules by
random thermal motion

» External diffusion: diffusion of the reactants or products between bulk fluid
and external surface of the catalyst

* Molar flux (W)

* Molecules of a given species within a single phase will always diffuse
from regions of higher concentrations to regions of lower
concentrations

* This gradient results in a molar flux of the species, (e.g., A), W,
(moles/areaetime), in the direction of the concentration gradient

e A vector:

bl @] esapbs

YOUR WAY TC SUCCE

WA - IWAX + JWAy + kWAZ
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Molar Flux W & Bulk Motion B, <%

Molar flux consists of two parts
* Bulk motion of the fluid, B,
* Molecular diffusion flux relative to the bulk motion of the fluid
produced by a concentration gradient, J ,

« W, =B, + ], (total flux = bulk motion + diffusion)
Bulk flow term for species A, B,: total flux of all molecules relative to fixed

coordinates (ZW,) times the mole fraction of A (y,):
Ba=Ya2W
Or, expressed in terms of concentration of A & the molar average velocity V:

mol mol m
By =CaAV =>Ba=Ca2yV, > T 3 <
m=-s m~ S

The total molar flux of A in a binary system composed of A & B is then:

Wp =Jp +CaV —In terms of concentration of A
Wp =Ja +Ca 2V},

Wa =Ja +Ya(Wa +Ws) .
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Diffusional Flux of A, J, & Molar FIF

o e
W, =J, + B, (total flux = diffusion + bulk motion) b\-r"fj
abul gl eaphs
WA = ‘]A + CAV

Wa =Ja[+Ca 2y,

Wp =[Jal[+Ya (Wa +Wg)
Diffusional flux of A resulting from a concentration difference, J,, is related to the
concentration gradient by Fick’s first law:

mol
> Ja =—CDpgVYya
m<-s
C: total concentration D ,g: diffusivity of A in B Ya: Mole fraction of A

V= iﬁ + j2 + kg gradient in rectangular coordinates
oXx "oy o0z

Putting it all together:

Wy =—CDagVya +Ya2 W,  General equation
Wy =—CDagVya +Ya (Wa +Wg) molir flux of A in binary system of A & B
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Simplifications for MOIar Flux /3%

Ham
B sinll
’\ RN A sl

W, =1, + B, (total flux = diffusion + bulk motion) alasl o iy

General equation:  Wp = —CDagVya +Ya2 W,
i
Wp =—CDpgVya +Ya (Wa +Ws)
Molar flux of A in binary system of A & B

* For constant total concentration: CDAglly, = DsgBCa
* When there is no bulk flow:  >W; =0

|
» For dilute concentrations, y, is so small that: ya2 WO
|

For example, consider TM of a solute diffusing in water,
where the concentration of water is 55.6 mol water/dm3

Yp = Ca 1 —>y, =0.01800
+Cy 14556
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Evaluation of Molar Flux<*

Type 1: Equimolar counter diffusion (EMCD)

 For every mole of A that diffuses in a given direction, one mole of B diffgigeg <=
In the opposite direction

* Fluxes of A and B are equal in magnitude & flow counter to each other: W, =

) WB WA - _CDABVyA * M O bulk motion =0

— Wp =—cDpgVya  or for constant total concentration: W, =-DagVCa

Type 2: Dilute concentration of A:  ya 2 W, 0

|
Wpa = —CDagVYa + Yy (WA +Wg) — Wy =—cDpgVy,  OF constant Cigpy -
o | Wa =-DagVCa
Type 3: Diffusion of A though stagnant B: Wy=0

Wy =—CDagVya +Ya (Wa +W&)O > Wa = VA

Type 4: Forced convection drives the flux of A. Diffu5|on in the direction of
flow (J4) is tiny compared to the bulk flow of A in that direction (z):

ERING - ?@MI&QAV

|ﬁ°u,5|o =~

CDABVYA

U <— volumetric flow rate
—> WA CA —

jcross-sectional area
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W, =J,+C,U @

U=2yU, alasl ] s

YOUR WAY TC SUCCESS

Binary System

U=yaUa+ysUp
Multiply and divide by

_6C,Up +CgUgl_ Wy +Wp
: C il

Wa +W,
CU=Cy AC 2= ya[Wa + W]

W =Jpa+ya(Wa +Ws)
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1. For equal molar counter diffusion
Wy=d,+ yA(WA +WB)

Jp= _DABVCA
(WA = _WA)
W, =-D,,VC,
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Wa =Ja +ya(Wa +Ws)

2. Diffusion through a stagnant film,

3. For dilute concentration
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Wa =Ja +ya(Wa +Ws)

2. Daiffusion through a sta%nant film, Wy =0
DAB C:A

J, =—
W, = _DABVCA + YA Wa
W, =- DAB VCA
1-y,

3. For dilute concentration
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Wa =Ja +ya(Wa +Ws)

2. Diffusion through a stagnant film, Wz =0
Wa = =DagVCa +yaWa

Dpp
1-ya

WA - - VCA

3. For dilute concentration
VA <<]

WA — _DABVCA
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TABLE 14-2.  DIFFUSIVITY RELATIONSHIPS FOR GASES, LIQUIDS, AND SOLIDS ﬁ
Order of Magnitude
Phase cm?/s m?/s Temperature and Pressure Dependences®
Gas
Gas
. p - P, (T, 1.75
Dag Bulk 10 10 D,g(T,, P,)=D,z(T,, P)) fT:a ?1
7.\
B Knudsen 102 106 D,(T,)=D,(T,) [172]
1
Liquid
D Liaqui -5 -9 _ w | T
AB iquid 10 10 D, (T,)=D,s(T,) — T
M2\ 4
: Ey(T,—T
T Solid 109 10-13 D,s(T,) = D,s(T,) exp {f { T{l Tzlﬂ

L1 Mo, liquid viscosities at temperatures T, and 75, respectively; E,, diffusion activation energy.
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Boundary layer

Catalyst . Boundary
pellet '

(a)

(b)
Figure 14-1 Boundary layer around the surface of a catalyst pellet.
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zz+Dz

WAZAC| WAZAC |Z DZ 0=0
Divid by 4Dz
_ WAZ|Z+DZ -Wy, -0
dWAZ —
dz
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Concentration profile ¢, =C, + (C W —C

As

Z 14-25
)< (14-25)

Figure 14-2 Concentration profile for EMCD in stagnant film model.

dC, D
WAZ = _DAB dz 5AB (CAO CAS)
k, = D%B (14-27)
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< 14-25
)< (14-25)

Figure 14-2 Concentration profile for EMCD in stagnant film model.

dC, D
dz - (;\B (CAO_CAS)

Concentration profile ¢, =C, + (C

Ab

-C

Asx

W,=-D,,—=

k., = D%B (14-27)

| Wae = k(Cap = Ca))| (14-28)
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7
Cas

Concentration profile ¢, =, +(C,, - C,,

z 14-25
) (14-25)

Figure 14-2 Concentration profile for EMCD in stagnant film model.

dC, D
WA =_DABd—ZA=%(CAO_CAs)
k= Dan (14-27)
d
Wy, = k(Cap— Ca))| (14-28)

_ Driving force _ Cpp— Cha

W,, = Flux :
Resistance (1/k,)
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(m!s)(m) dimensionless
D AB m?/s

bl gl sagla

YOUR WAY TC SUCCESS

Sc v _ m?/s

DAB mE/S

rou_(g/n)m)(ms)

dimensionless

Re = dimensionless
m (gm/s)
TaBLE 14-4. MASS TRANSFER CORRELATIONS
Turbulent flow. mass transfer to pipe wall Sh = .332 (Re)V2 (Sc)13
Mass transfer to a single sphere Sh = 2 + 0.6 Rel2 Scl/3
Mass transfer in fluidized beds Sh = Jp Re Scl!?

$Ip = 0.765 + 0.365
D Re-82 R e0.386

Mass transfer to packed beds Sh = Jp Re Scl!?
$Jp = 0.453 Re0453
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Sh" = 1.0(Re")!/2Sc!/3

el ) o
Dyg |1 = |y p(l—d)y PDAp
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Re
_0.765 0.365
bJp = Re0-82 * R 0386
[]U2
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CAs

Cao>Cps

Figure 14-3 Diffusion to, and reaction on, external surface of pellet.

“Tas = erAs

WASurface = _rAs

W, = kc (CA _CAS): erAs

We need to eliminate C,, . c. = KCa
Mkt k,

and the rate of reaction on the surface becomes
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One will often find the flux to or from the surface as written in terms of an effecti
transport coefficient kg alavl ol sappin

YOUR WAY TC SUCCESS

WA:_ Ks :keffCA

Case 1

kK

C T

kK  —
Tk ik
k. > K.
keff :k
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One will often find the flux to or from the surface as written in terms of an effectiv
transport coefficient & g

bl gl sagla

YOUR WAY TC SUCCESS

where Y
WA =Ty = keff CA

Case 1

D, |Yd, Py v

k. =0.6 v
d, V D,x
k, ~ (U /d, )"
_rKs — chA

Case 2
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ce as written in terms of an effecti

transport coefficient & g: _ _
P i WA — _rKs - keff CA
where k k
keﬁ — —
K. +K,
Case 1 k., >k,
ke1’f — kc

Case 2

12 12
(=0 Do | D)V
i d, \ v D,q
k, ~ (U /d )"
_rKs = chA
k, <k.

k C
W, =-r" = r=A ~kC
A As 1+k /k, " A

~

COLLEGE OF ENGINEERING - dsssyml| 8414

Tikrit University - cu)$i aola

bl gl sagla

YOUR WAY TC SUCCESS



—@

bl @l ey

DUR WAY TC SUCCESS

~

Reaction
Limited

_rE

Diffusion
Limited

(U ;dp)wz

Figure 14-4 Regions of mass transfer—limited and reaction—limited reactions.
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Transdermal drug delivery schematic.......

YOUR WAY T'C SUCCES

Skin Layers

Nicotine
nmnnal
m
7 mg delivered

over 24 hours
NCH 0830

Delivery Vehicle (Patch)

4-51

2=0 2z=0.002 mm 2=0.039 mm
»
FA(Z) - FA(Z+ T 0=0
AW - AW
(z+Az) Az

):0
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Step 1.  Diffusion of A through the Epidermis film, which is stagnang:si <=

¥ TC SUCCESS

reduces to
W, _
dz
Step 2. Use Fick’s law to relate the flux W,, and the concentration
gradient JC
WAl = _DAl—A
dz
Step 3. State the boundary conditions
z=0 C,=C,
z=qg C,= CAdl
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Step 4. Next substitute for W,, and divide by D,, to obtain #ilel Gy
2
d’Ca _,
dz®

Integrating twice

C,=Kz+K,
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Step 4. Al ol ety
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Using the boundary conditions we can eliminate the
constants K; and K, to obtain the concentration profile

C,=K;z+K,
Ciw—-C, 2
CAO_CA 51

Step 5. Substituting CA we obtain the flux in the Epidermis layer

dC,
Wy =-Dy = Al[CAo Al]

COI.I.EGE or ENGINEERING s mlé.




Step 6. Carry out a similar analysis for the Dermis layer starting with alail g} ey
2
dC, _
=0
dz
We find
z=a C,=C,
Substituting Z - dz CA — O
Step 7. At the interface between the Epedermis and Dermis layer, i.e., at z = §,
C,-0_z
CAl -0 012
D
— A2
Wi = e Ca
2
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Substituting sl ol gl

D
VVAz = TAZCAl

2

Step 7. At the interface between the Epedermis and Dermis layer,
lL.e.,atz =29,

Wi =W =W,
Equating Equations (E14-1.5) and (E14-1.6)

DAl [CAO - CAl] — DAZ C
01 0; Al

COLLEGE OF ENGINEERING - dsssiml| a4l&



. pedermis and Dermis laye

lL.e.,atz =9,

r %
bl gl sagla

=W =W, —
Equating Equations (E14-1.5) and (E14-1.6)

DAl [CAO - CAl] — DA2 C

Al
Solving for C,, 4 Z
D Cao
2
Cy =
Do Dy,
O 0

COLLEGE OF ENGINEERING - dsssyml| 8414
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pedermis and Dermis layer,

<

l.e.,atz =
emwll&wb
WAl =W, =W,
W DA2 CA1
A
%,

Substituting for C,, in Equation (E14-1.10)

W = CAO — CAO
T d . d  R+R,

DAZ DAl
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FA:ApWA:A A:A

If we consider there is a resistance to the drug release in the
patch, Ry, then the total resistance is

Ry =R,+R +R;

A C
Fy=d4,w="2"2
R
T
If the resistance in the dermis layer is neglected
€D p U
F,=4,8—2C,
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Molar Molar Molar rate of| | Molar rate of ool s
ratein| — |rateout| T generation | ~ | accumulation
Fﬁz‘z o FAz|z+ﬁz + ’ﬁ.ac(AcAZ) = 0 (14'51)

2 2+ AL
Figure 14-5 Packed-bed reactor.

2 (dFAZjH;\’aC =0

dz

A
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L 2dFe0 40 =0

A g dz @
Neglect

FAZ = ACWAZ :( Az +BAZ)AC
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dCp
dz

—I/'Iq - WAr

<
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-U +rka, =0 T

dcC,

dz

-U _kcac(CA _CAS):O

dc,

dz

-U

- kcaCCA — O
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CA _ ak a 0
CAO k alaal @] ey
a a 0 YOUR WAY TC SUCCESS
1§ =k Cy = kCpoexp-g- iz
1.0
Ca X
Cao
0 ! | |
0 z/L 10 O z/L 1.0
(a) (b)

Figure 14-7 Axial concentration (a) and conversion (b) profiles in a packed bed.

C,—C, MolesAReacted

Co Mole A Fed
1 _ka, 7
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R ) Ry S

Figure E14-4.1 Series arrangement

=t —

2

s —

2

Figure E14-4.2 Parallel arrangement.
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s
1
In
1- X, _kcz(szul
|n 1 kcl Ll U2
1-X,
X, =0.865
1
L ==
2 2L1
1
U2:§U1
X, =0.865
X,="?
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k aUY?
kc2 _ /UZ jj/z
kcl \Ul
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1 1 L (u )
In In 2| =4
1-X, 1-x, )L \u,

:(,n 1 j_;u u, V"’
1-0.865) L, | lU,

- 2.006}5 —1.414

X,=0.76
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transport coefficient kg

—
Wa = —ras = kegg Ca

bl gl] sagla

k k DUR WAY TC SUCCESS

where ok,

k
Tkt k,

k,d
Sh = -<2 =2 + 0.6Re!/2Sc!”3

AB

k.= 0.6 Dag Rel/28c1/3
C dp

1/2 1/3
— 06|28 || Y| | v
dp v D,y
2/3

DAB x [J1/2
1«’”6 d}?ﬂ

k,=0.6 X

k. = 0.6 X (Term 1) X (Term 2)

(Uy/ Uy )OS = 205 = 1.41 or 41%
k, <k,
COLLEGE OF ENGINEERING - kCh




FA‘Z :FA‘Z+DZ+FAACDZ:O
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@+FAAC :0

dz
F, Az = Ac WAZ

dc,

dz

Wiz ==Dyp

z

Fy =

z
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Step 4. Next substitute for W,, and divide by D,; to obtain lail ol iy

YOUR WAY TC SUCCESS

¢,

2
Integrating twice dz

C,=Kz+K,
using the boundary conditions we can eliminate the
constants K; and K, to obtain the concentration profile

Co-C,_z
CAO - CA 01
Step 5. Substituting CA we obtain the flux in the Epidermis layer
dC, D
WAl = _DAl dZA =—4 [CAO CAl]

COLLEGE OF ENGINEERING - dsssyml| 8414
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TaBLE 14-1. TYPES OF BOUNDARY CONDITIONS

1.

Specify a concentration at a boundary (e.g., z = 0, C4, = C,g). For an instantaneous reaction
at a boundary, the concentration of the reactants at the boundary is taken to be zero (e.g.,
C,, = 0). See Chapter 18 for the more exact and complicated Danckwerts’ boundary condi- bl ¢l ipk
tions at z =0 and z = L.

Specify a flux at a boundary.

a. No mass transfer to a boundary,

W, =20 (14-18)

For example, at the wall of a nonreacting pipe. Species A cannot diffuse into the pipe so
W, = 0 and then

dC,
dr

That is. because the diffusivity is finite, the only way the flux can be zero is if the concen-
tration gradient is zero.

=0 atr = R (14-19)

. Set the molar flux to the surface equal to the rate of reaction on the surface,

W, (surface) = — r} (surface) (14-20)

. Set the molar flux to the boundary equal to convective transport across a boundary layer,

Wi (boundary) = k.(Cap — Ca,) (14-21)

where k_ is the mass transfer coefficient and C,, and C,,; are the surface and bulk concen-
trations, respectively.

Planes of symmetry. When the concentration profile is symmetrical about a plane. the concen-
tration gradient is zero in that plane of symmetry. For example, in the case of radial diffusion
in a pipe, at the center of the pipe

dC, _

0 atr =0 (14-22)
dr

COLLEGE OF ENGINEERING - dsssiml| a4l&

Tikrit University - cu$s aeola

&

DUR WAY TC SUCCESS



Boundary Conditions ... %

E‘.Eﬁa " (

L

AN s Gl

e Boundary layer g

* Hydrodynamics boundary layer thickness: distance from a solid object
to where the fluid velocity is 99% of the bulk velocity U,

* Mass transfer layer thickness: distance 6 from a solid object to where
the concentration of the diffusing species is 99% of the bulk

concentration
» Typically diffusive transport is modelled by treating the fluid layer next to a

solid boundary as a stagnant film of thickness@}\b

0
CAS

C,e: Concentration of A at surface  C,,: Concentration of A in bulk

In order to solve a design equation that accounts for external
COLLEGE OENGINEERINGS- 0@ Agarsi@set the boundary conditions
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Concentration at the boundary (i.e., catalyst particle surface) is specifiedisu sl <is

* |f a specific reactant concentration is maintained or measured at the surface,
use the specified concentration

» When an instantaneous reaction occurs at the boundary, then C, =0
Flux at the boundary (i.e., catalyst particle surface) is specmé%:

a) No mass transfer at surface (nonreacting surface)

Wa ‘surface =0

b) Reaction that occurs at the surface is at steady state: set the molar
flux on the surface equal to the rate of reaction at the surface

. . o
WA‘surface reaction rate per unit surface area (mol/m?-sec)

c) Convective transport across the boundary layer occurs

Types of Boundary‘Mong ¢

WA‘boundary = kC (CAb o CAS)

Planes of symmetry: concentration profile is symmetric about a plane
» Concentration gradient is zero at the plane of symmetry

Radial diffusion in

COLLEGE©F ENGI

dCp _ Radlial diiffusion in a
@G - dsssiml DA% =0 atr=0 @ sphere
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Correlation for Convective Transpox@®ross th:
Boundary Layer

alasl ] siggn
For convective transport across the boundary layer, the boundary condition is:”
WA‘boundary = kC (CAb o CAS)

The mass transfer coefficient for a single spherical particle is calculated from the

Frossling correlation: D
k = _ABgh
C
Ao

k.: mass transfer coefficient D ,g: diffusivity (m?/s)
d,: diameter of pellet (m) Sh: Sherwood number (dimensionless)

Sh=2+0.6ReY2scl3

Reyno|d's number Re:U_dp Schmidt number: Sc = L
v Dag
v: kinematic viscosity or momentum diffusivity (m?/s); v=u/p
p: fluid density (kg/m?3) W: viscosity (kg/m-s)

U: free-stream velocity (m/s) dp: diameter of pellet (m)
COLLEGEDQF ENGINEERING? /S siml| 84l&
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» Spherical catalyst particle in PBR /\CAbz

* Liquid velocity past particle U = 0.1 m/s
* Catalyst diameter d =1 cm =0.01m

* Instantaneous rxn at catalyst surface C,.~0

» Bulk concentration C,,= 1 mol/L CASfO
* v = kinematic viscosity = 0.5 x 106 m%/s Determine the flux of A to
e D,g = 11010 m¥s the catalyst particle

The velocity is non-zero, so we primarily have convective mass transfer to the

catalyst particle: W ‘boundary =k (Cap —Cas)

Compute k. from « - PAB sh Ud, ¢ 14

. . V2 .13 = =
Fréssling correlation: ©  d, Sh=2+0.6Re""Sc™" Re=— Dag

0.1m/s(0.01m) 0.5x107%m?/s
0.5x10%m?/s 1x1070m? /s
Sh =2+0.6(2000)"2 (5000)* —[sh = 461

—[Re =2000| Sc = —|Sc =5000

Re =

6 M
COLLEGE OF ENGINEERING - dss=amll s 110 .2 = Ke =4.61x10° —
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» Spherical catalyst particle in PBR

* Liquid velocity past particle U = 0.1 m/s

* Catalyst diameter d,= 1cm = 0.0Tm

* Instantaneous rxn at catalyst surface C, =0

« Bulk concentration C,,= 1 mol/L CASfO
* v = kinematic viscosity = 0.5 x 10¢ m%/s Determine the flux of A to
D g = 11010 m?/s the catalyst particle

The velocity is non-zero, so we primarily have convective mass transfer to the

catalyst particle: Wa boundary = Ke (Can =Cas)

D
Computed kcfrom ke="2BSh Kk, =4.61x10°"
Frossling correlation: dy S

461107 m(lmLOI (1000Lj - Oj_) WA‘boundary — 4.61x1073 mol

WA —
‘boundary S m3 m2.s

Because the reactant is consumed as soon as it reaches the surface

" _3 mol
A‘boundary —I‘AS =4.61x10 2

COLLEGE OF ENGINEERING - dsssiml| a4l& m<-s
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/ Alsurface :_rA”> and fO”OWC .;;:I‘ »
kinetics: -r,¢"=k C,, (Observed rate is not diffusion limited) | i
ke (Cap ~Chas) = WA‘boundary s " =K Cas g‘::lﬂi‘»:
Because the reaction at the surface is at the steady state & not instantaneous:
CAS # 0 WA‘boundary =Tas "= erAS

So if C, were in terms of measurable species, we would know W o ingary
Use the equality to put C,. in terms of measurable species (solve for C,.)

Ke (CAb - CAS) =K.Cprs 2 KcCap —KcCas =kiCpas = KeCpap =K Cps +KcCas

KcCap ‘ )
—>keCapb =Chs(kr +ke) K, +k =Cpas  Pluginto -,
" _ n _ krkCCAb
WA ‘boundary =T as = kI’CAS - WA ‘boundary =T As = kr + kC
Rapid o, k>>k— ke in o - KkeCap | _kkecCap — —r"aq =kcChp
denominator is negligible K, £kg K Diffusion limited
Slow rxn, k<<k.— k. in o _KikeCap | e KekoCab — —r" 5 =k,Cpap

(i COLIEGEOF ENGIREERING - 'Aw *e. >
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Mass Transfer & Rxn Limited Reacticd@®

—

o _kikCap
B A
STk, ke

reaction limited regime

—"as = krCAb
, transport limited regime
-r
4 I As = kcCAb
Dag ud v

Ke ="y SN sh=2+06Re*?sc'® Re=—F SC=_

p 1% AB
Ud, 12 13
k. =2ABlo, o6l P | [V
© d D

P 4 AB

(U/dp)m
(fluid velocity/particle diameter)'2
When measuri 98! rates in the lab, use high velocities or small particles to ensure the reaction is

COLLEGE OF ENGINEERING - dsssiml| a4l&
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Mass Transfer & Rxn Limited Reactions <

—

_ krchAb

I = P reaction limited regime
I‘+ C

—"as = krCAb
, transport limited regime
-r
4 —1"as =KcCap
Dap ud
Ke = ?Sh Sh-2+0.6Re!?sc!? Re=—F SC=

12 13

Ud

. = DAB 2+o.6(pj (Vj
dp | % DAB

Dap

(Uld,)"? = (fluid velocity/particle diameter)'?

16 | g 12 Kep \Ug Dag1
COLLEGE OF ENGINEERING - ‘asPaml]] &y . N
Tikrifm@@g%s,usg ul for assessing parameter sensitivity:

d

Vo

2 2/3 6
—> K, Dag”?[ U12 | ke _ (UZJJ/ (DAsz / (Vlj]/ (dl
p2

.




Mass Transfer Limited: Rx=#f PBR N
sl ) esigpln
A + 9 B o E C+ g D yaouuw‘vrcsucc:ss
a a a
A steady state mole balance on reactant A between z and z + Az :
. 6(1-¢
|:Az ‘z o |:Az ‘Z+AZ TIA ac(AcAZ) =0 where dc = M
P
a.: external surface area of catalyst per volume of catalytic bed (m#/m?3)
d: porosity of bed, void fraction d,: particle diameter (m)
r" : rate of generation of A per unit catalytic surface area (mol/s-m?)
Divide out Faz |, —Faz|z+az fraa. =0 Take limit _ 1 (dFa; +r'ya. =0
AAZ: A AZ C as Az—0: AC dz A

Put F, and —," in terms of C: Foz = Wa A = Gne +Baz)Ac
Axial diffusion is negligible compared to bulk flow (convection)
Fay =Ba,Ac =UC, A, Substitute into the mass balance

d(UCA) dCA U 1" dCA 1"
__\TTA) — —U—2+C rr.a.=0--UuU—%—=+r",a.=0
COELEGE 5#&&&le0sz;@£ Azl dY, | AT TU T T g, T AT
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Mass Transfer Limited R4 PBR - %‘

’\ Mlhund)

(

A+28 5 Cct 9 u9Ca R C‘m@qmﬁ
a a a dz

At steady-state:
Molar flux of A to particle surface = rate of disappearance of A on the surface

—I "A - WAr — kC (CA - CAS) SUbSUtUte
mass transfer coefficient k. =D /6 (s1) &: boundary layer thickness
C,e: CONcentration of A at surface  C,: concentration of A in bulk

—Ud& —keae (Ca —Cag) =0 Cus= 0in most mass transfer-limited rxns

dz
dCp Rearrange & integrate to find how C, and the 1", varies
—>-U— dz ~Ke8cCa =0 With distance down reactor
K
—>—Ud&:k a.Cp — j fdCa ?— Cdz —>|nC—A=— e,
dz ¢° con C Cao U
A0 CA 0

Ca Kcac Kea
A _g =k K
” (C%LEGEX ILNGINEEIJE)G‘CA unﬁ\ﬂﬁp[ } A =KeCao eXp[ U Z}

Tikrit University - cu,$ dsola ‘



Summary

* This lecture expanded on the topic of external
diffusion limitations in catalysis.

» We reviewed molar flux concepts, transport
coefficients, and diffusion boundary conditions.

» We also examined how reaction rates are
Influenced by mass transfer and how transport
models help In designing efficient reactors.

» Understanding these principles is essential for
optimizing reactor performance and addressing
diffusion constraints.
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